3.234 \(\int \frac{\sqrt{b x^2+c x^4}}{x^2} \, dx\)

Optimal. Leaf size=50 \[ \frac{\sqrt{b x^2+c x^4}}{x}-\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{b x^2+c x^4}}\right ) \]

[Out]

Sqrt[b*x^2 + c*x^4]/x - Sqrt[b]*ArcTanh[(Sqrt[b]*x)/Sqrt[b*x^2 + c*x^4]]

________________________________________________________________________________________

Rubi [A]  time = 0.0491527, antiderivative size = 50, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {2021, 2008, 206} \[ \frac{\sqrt{b x^2+c x^4}}{x}-\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{b x^2+c x^4}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*x^2 + c*x^4]/x^2,x]

[Out]

Sqrt[b*x^2 + c*x^4]/x - Sqrt[b]*ArcTanh[(Sqrt[b]*x)/Sqrt[b*x^2 + c*x^4]]

Rule 2021

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b
*x^n)^p)/(c*(m + n*p + 1)), x] + Dist[(a*(n - j)*p)/(c^j*(m + n*p + 1)), Int[(c*x)^(m + j)*(a*x^j + b*x^n)^(p
- 1), x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && G
tQ[p, 0] && NeQ[m + n*p + 1, 0]

Rule 2008

Int[1/Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[2/(2 - n), Subst[Int[1/(1 - a*x^2), x], x, x/Sq
rt[a*x^2 + b*x^n]], x] /; FreeQ[{a, b, n}, x] && NeQ[n, 2]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{b x^2+c x^4}}{x^2} \, dx &=\frac{\sqrt{b x^2+c x^4}}{x}+b \int \frac{1}{\sqrt{b x^2+c x^4}} \, dx\\ &=\frac{\sqrt{b x^2+c x^4}}{x}-b \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{x}{\sqrt{b x^2+c x^4}}\right )\\ &=\frac{\sqrt{b x^2+c x^4}}{x}-\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{b x^2+c x^4}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0351292, size = 60, normalized size = 1.2 \[ \frac{x \left (-\sqrt{b} \sqrt{b+c x^2} \tanh ^{-1}\left (\frac{\sqrt{b+c x^2}}{\sqrt{b}}\right )+b+c x^2\right )}{\sqrt{x^2 \left (b+c x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*x^2 + c*x^4]/x^2,x]

[Out]

(x*(b + c*x^2 - Sqrt[b]*Sqrt[b + c*x^2]*ArcTanh[Sqrt[b + c*x^2]/Sqrt[b]]))/Sqrt[x^2*(b + c*x^2)]

________________________________________________________________________________________

Maple [A]  time = 0.047, size = 65, normalized size = 1.3 \begin{align*} -{\frac{1}{x}\sqrt{c{x}^{4}+b{x}^{2}} \left ( \sqrt{b}\ln \left ( 2\,{\frac{\sqrt{b}\sqrt{c{x}^{2}+b}+b}{x}} \right ) -\sqrt{c{x}^{2}+b} \right ){\frac{1}{\sqrt{c{x}^{2}+b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+b*x^2)^(1/2)/x^2,x)

[Out]

-(c*x^4+b*x^2)^(1/2)*(b^(1/2)*ln(2*(b^(1/2)*(c*x^2+b)^(1/2)+b)/x)-(c*x^2+b)^(1/2))/x/(c*x^2+b)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{4} + b x^{2}}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2)^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^4 + b*x^2)/x^2, x)

________________________________________________________________________________________

Fricas [A]  time = 1.53665, size = 262, normalized size = 5.24 \begin{align*} \left [\frac{\sqrt{b} x \log \left (-\frac{c x^{3} + 2 \, b x - 2 \, \sqrt{c x^{4} + b x^{2}} \sqrt{b}}{x^{3}}\right ) + 2 \, \sqrt{c x^{4} + b x^{2}}}{2 \, x}, \frac{\sqrt{-b} x \arctan \left (\frac{\sqrt{c x^{4} + b x^{2}} \sqrt{-b}}{c x^{3} + b x}\right ) + \sqrt{c x^{4} + b x^{2}}}{x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2)^(1/2)/x^2,x, algorithm="fricas")

[Out]

[1/2*(sqrt(b)*x*log(-(c*x^3 + 2*b*x - 2*sqrt(c*x^4 + b*x^2)*sqrt(b))/x^3) + 2*sqrt(c*x^4 + b*x^2))/x, (sqrt(-b
)*x*arctan(sqrt(c*x^4 + b*x^2)*sqrt(-b)/(c*x^3 + b*x)) + sqrt(c*x^4 + b*x^2))/x]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x^{2} \left (b + c x^{2}\right )}}{x^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+b*x**2)**(1/2)/x**2,x)

[Out]

Integral(sqrt(x**2*(b + c*x**2))/x**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.2643, size = 92, normalized size = 1.84 \begin{align*}{\left (\frac{b \arctan \left (\frac{\sqrt{c x^{2} + b}}{\sqrt{-b}}\right )}{\sqrt{-b}} + \sqrt{c x^{2} + b}\right )} \mathrm{sgn}\left (x\right ) - \frac{{\left (b \arctan \left (\frac{\sqrt{b}}{\sqrt{-b}}\right ) + \sqrt{-b} \sqrt{b}\right )} \mathrm{sgn}\left (x\right )}{\sqrt{-b}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2)^(1/2)/x^2,x, algorithm="giac")

[Out]

(b*arctan(sqrt(c*x^2 + b)/sqrt(-b))/sqrt(-b) + sqrt(c*x^2 + b))*sgn(x) - (b*arctan(sqrt(b)/sqrt(-b)) + sqrt(-b
)*sqrt(b))*sgn(x)/sqrt(-b)